The US Navy's free electron laser weapon just scored another power landmark -500,000 volts.
The key thing about a FEL weapon is that the wavelength can be tuned to penetrate different atmospheric conditions. The Navy is planning on both FEL and rail guns on their ships starting after 2020. New ships are already getting power systems to support them.
Link....
The key thing about a FEL weapon is that the wavelength can be tuned to penetrate different atmospheric conditions. The Navy is planning on both FEL and rail guns on their ships starting after 2020. New ships are already getting power systems to support them.
Link....
Unexpectedly, Navy’s Superlaser Blasts Away a Record
NEWPORT NEWS, Virginia — Walking into a control station at Jefferson Labs, Quentin Saulter started horsing around with his colleague, Carlos Hernandez. Saulter had spent the morning showing two reporters his baby: the laboratory version of the Navy’s death ray of the future, known as the free-electron laser, or FEL. He asked Hernandez, the head of injector- and electron-gun systems for the project, to power a mock-up electron gun — the pressure-pumping heart of this energy weapon — to 500 kilovolts. No one has ever cranked the gun that high before.
Smiling through his glasses and goatee, Hernandez motioned for Saulter to click and drag a line on his computer terminal up to the 500-kV mark. He had actually been running the electron injector at that kilovoltage for the past eight hours. It’s a goal that eluded him for six years.
Saulter, the program manager for the free-electron laser, was momentarily stunned. Then he realized what just happened. “This is very significant,†he says, still a bit shocked. Now, the Navy “can speed up the transition of FEL-weapons-system technology†from a Virginia lab to the high seas.
Translated from the Nerd: Thanks to Hernandez, the Navy will now have a more powerful death ray aboard a future ship sooner than expected, in order to burn incoming missiles out of the sky or zap through an enemy vessel’s hull.
>
>
Currently, the free-electron laser project produces the most-powerful beam in the world, able to cut through 20 feet of steel per second. If it gets up to its ultimate goal, of generating a megawatt’s worth of laser power, it’ll be able to burn through 2,000 feet of steel per second. Just add electrons.
And that’s why Hernandez’s achievement is so important. He shrugs, concealing his pride. A powerful accelerator at Cornell University is “stuck at 250″ kilovolts, he grins. And he’s on a roll. Hernandez’s team fired up the injector in December with enough pressure to prove the FEL will ultimately reach megawatt class. Steel: Beware.
NEWPORT NEWS, Virginia — Walking into a control station at Jefferson Labs, Quentin Saulter started horsing around with his colleague, Carlos Hernandez. Saulter had spent the morning showing two reporters his baby: the laboratory version of the Navy’s death ray of the future, known as the free-electron laser, or FEL. He asked Hernandez, the head of injector- and electron-gun systems for the project, to power a mock-up electron gun — the pressure-pumping heart of this energy weapon — to 500 kilovolts. No one has ever cranked the gun that high before.
Smiling through his glasses and goatee, Hernandez motioned for Saulter to click and drag a line on his computer terminal up to the 500-kV mark. He had actually been running the electron injector at that kilovoltage for the past eight hours. It’s a goal that eluded him for six years.
Saulter, the program manager for the free-electron laser, was momentarily stunned. Then he realized what just happened. “This is very significant,†he says, still a bit shocked. Now, the Navy “can speed up the transition of FEL-weapons-system technology†from a Virginia lab to the high seas.
Translated from the Nerd: Thanks to Hernandez, the Navy will now have a more powerful death ray aboard a future ship sooner than expected, in order to burn incoming missiles out of the sky or zap through an enemy vessel’s hull.
>
>
Currently, the free-electron laser project produces the most-powerful beam in the world, able to cut through 20 feet of steel per second. If it gets up to its ultimate goal, of generating a megawatt’s worth of laser power, it’ll be able to burn through 2,000 feet of steel per second. Just add electrons.
And that’s why Hernandez’s achievement is so important. He shrugs, concealing his pride. A powerful accelerator at Cornell University is “stuck at 250″ kilovolts, he grins. And he’s on a roll. Hernandez’s team fired up the injector in December with enough pressure to prove the FEL will ultimately reach megawatt class. Steel: Beware.

Fractal Design Arc Mini R2, 3800X, Asus B450M-PRO mATX, 2x8GB B-die@3800C16, AMD Vega64, Seasonic 850W Gold, Black Ice Nemesis/Laing DDC/EKWB 240 Loop (VRM>CPU>GPU), Noctua Fans.
Comment