“Antiprotonic hydrogen has already been produced,†explains Nicola Zurlo, an investigator in the Chemistry and Physics Department, headed by professor Evandro Lodi-Rizzini, at the University of Brescia in Brescia, Italy. “But what we’ve done is produce it in a totally different way. The process and mechanism is completely different.â€
This new way of producing antiprotonic hydrogen, also called protonium, is set forth in a Letter published by Zurlo and his ATHENA collaboration colleagues on October 9 in Physical Review Letters. It is titled “Evidence For The Production Of Slow Antiprotonic Hydrogen In Vacuum.â€
The ATHENA (Apparatus for High precision Experiment on Neutral Antimatter) collaboration is a project associated with CERN in Geneva, Switzerland, comprising an international team including scientists from Italy, the United Kingdom, Japan, Switzerland, Denmark and Brazil. “We demonstrated more than a million antihydrogen atoms in our set of measurements,†Zurlo tells PhysOrg.com. These antihydrogen atoms represent the simplest “chemical†structure made of antimatter, as atomic hydrogen is the simplest “chemical†structure in our usual “matter†world. Now, the work of the ATHENA collaboration has been focused on the production of the antiprotonic hydrogen by a chemical reaction between matter and antimatter. “This production was totally unexpected and increases by far the number of important results achieved in our work,†says Zurlo.
>
This new way of producing antiprotonic hydrogen, also called protonium, is set forth in a Letter published by Zurlo and his ATHENA collaboration colleagues on October 9 in Physical Review Letters. It is titled “Evidence For The Production Of Slow Antiprotonic Hydrogen In Vacuum.â€
The ATHENA (Apparatus for High precision Experiment on Neutral Antimatter) collaboration is a project associated with CERN in Geneva, Switzerland, comprising an international team including scientists from Italy, the United Kingdom, Japan, Switzerland, Denmark and Brazil. “We demonstrated more than a million antihydrogen atoms in our set of measurements,†Zurlo tells PhysOrg.com. These antihydrogen atoms represent the simplest “chemical†structure made of antimatter, as atomic hydrogen is the simplest “chemical†structure in our usual “matter†world. Now, the work of the ATHENA collaboration has been focused on the production of the antiprotonic hydrogen by a chemical reaction between matter and antimatter. “This production was totally unexpected and increases by far the number of important results achieved in our work,†says Zurlo.
>