Article....
NASA Testing Portable Robot Surgeon
In zero gravity, both the medical robot and the patient will have to be immobilized, and doctors will have to deal with the different ways organs and bodily fluids move without gravity, explained Dr. Mika Sinanan. A major goal of the experiment is to show that the robot can be dismantled, transported and set up by non-engineers in zero gravity.
Doctors and scientists from the University of Washington will get a glimpse of what it would be like to do remote surgery in space when a portable medical robot they created will be tested next month in an underwater environment designed by NASA to simulate zero gravity.
The portable robot, which can be controlled over the Internet by a human surgeon many miles away, is being developed with money from the U.S. Defense Department to be used to treat wounded soldiers on a battlefield, to perform complicated surgery on patients in remote areas of the developing world and to help sick astronauts in space.
The difference between the robot surgeon demonstrated at the University of Washington on Wednesday and others that are being used today in American hospitals involves portability and communications, said Professor Blake Hannaford, co-director of the UW BioRobotics Lab.
All the portable parts of this device weigh about 50 pounds and can be transported and reconstructed by non-engineers at remote sites. Robot surgeons currently being used in hospitals weigh several thousand pounds, are not portable and can't be easily broken down and reconstructed.
>
>
In zero gravity, both the medical robot and the patient will have to be immobilized, and doctors will have to deal with the different ways organs and bodily fluids move without gravity, explained Dr. Mika Sinanan. A major goal of the experiment is to show that the robot can be dismantled, transported and set up by non-engineers in zero gravity.
Doctors and scientists from the University of Washington will get a glimpse of what it would be like to do remote surgery in space when a portable medical robot they created will be tested next month in an underwater environment designed by NASA to simulate zero gravity.
The portable robot, which can be controlled over the Internet by a human surgeon many miles away, is being developed with money from the U.S. Defense Department to be used to treat wounded soldiers on a battlefield, to perform complicated surgery on patients in remote areas of the developing world and to help sick astronauts in space.
The difference between the robot surgeon demonstrated at the University of Washington on Wednesday and others that are being used today in American hospitals involves portability and communications, said Professor Blake Hannaford, co-director of the UW BioRobotics Lab.
All the portable parts of this device weigh about 50 pounds and can be transported and reconstructed by non-engineers at remote sites. Robot surgeons currently being used in hospitals weigh several thousand pounds, are not portable and can't be easily broken down and reconstructed.
>
>