Link....
Single spinning nuclei in diamond offer a stable quantum computing building block
At room temperature, carbon-13 nuclei in diamond create stable, controllable quantum register
CAMBRIDGE, Mass. -- Surmounting several distinct hurdles to quantum computing, physicists at Harvard University have found that individual carbon-13 atoms in a diamond lattice can be manipulated with extraordinary precision to create stable quantum mechanical memory and a small quantum processor, also known as a quantum register, operating at room temperature. The finding brings the futuristic technology of quantum information systems into the realm of solid-state materials under ordinary conditions.
The results, described this week in Science, could revolutionize scientists' approach to quantum computing, which is built on the profound eccentricity of quantum mechanics and could someday far outperform conventional supercomputers in solving certain problems.
"These experiments lay the groundwork for development of a new approach to quantum information systems," says Mikhail D. Lukin, professor of physics in Harvard's Faculty of Arts and Sciences.
>
At room temperature, carbon-13 nuclei in diamond create stable, controllable quantum register
CAMBRIDGE, Mass. -- Surmounting several distinct hurdles to quantum computing, physicists at Harvard University have found that individual carbon-13 atoms in a diamond lattice can be manipulated with extraordinary precision to create stable quantum mechanical memory and a small quantum processor, also known as a quantum register, operating at room temperature. The finding brings the futuristic technology of quantum information systems into the realm of solid-state materials under ordinary conditions.
The results, described this week in Science, could revolutionize scientists' approach to quantum computing, which is built on the profound eccentricity of quantum mechanics and could someday far outperform conventional supercomputers in solving certain problems.
"These experiments lay the groundwork for development of a new approach to quantum information systems," says Mikhail D. Lukin, professor of physics in Harvard's Faculty of Arts and Sciences.
>