PhysOrg....
Evolution led to genetic variation that may affect diabetes
The root causes of complex diseases such as type-2 diabetes and obesity have been difficult to identify because the diseases are, well, complex. They occur at the dicey biological intersection of genes and environment, and, because they arose in our relatively recent past, it's not easy to simply compare DNA sequences from "then" and "now" to pinpoint likely genetic culprits.
Now researchers at the Stanford University School of Medicine have identified genetic variations in a hormone involved in the secretion of insulin — a molecule that regulates blood sugar levels — that occur more frequently in some human populations than others. People with the "new" variants, which are thought to have first occurred 2,000 to 12,000 years ago, have higher fasting levels of blood glucose than those with the more traditional, or ancestral, form of the gene. High blood glucose levels are associated with the development of diabetes, which occurs when the body is unable to produce or respond properly to insulin.
>
The finding may help scientists better understand the subtle changes in human metabolism, or "energy balance regulation," that occurred as our species shifted from being primarily hunter-gatherers to a more agriculturally based society. It may also help clinicians identify individuals likely to develop diabetes, and direct the development of new therapies for diabetes and obesity.
>
The finding is particularly interesting because it may help clinicians identify pregnant women likely to develop gestational diabetes, according to Hsu. But it also gives a glimpse into our not-so-distant past and the ways our ancestors grappled with environmental change.
"Like other humans at the time, the Eurasian population really had to fight for survival," said Hsu. "Now we're starting to pinpoint how they did that on a molecular level. These gene variants, and the resulting higher blood sugar levels it fostered, may have helped women maintain successful pregnancies in the face of the inevitable famines that occur in an agriculturally based society. Now, in a more food-secure environment, variations in GIP could contribute to the development of diabetes or obesity."
Provided by Stanford University Medical Center
The root causes of complex diseases such as type-2 diabetes and obesity have been difficult to identify because the diseases are, well, complex. They occur at the dicey biological intersection of genes and environment, and, because they arose in our relatively recent past, it's not easy to simply compare DNA sequences from "then" and "now" to pinpoint likely genetic culprits.
Now researchers at the Stanford University School of Medicine have identified genetic variations in a hormone involved in the secretion of insulin — a molecule that regulates blood sugar levels — that occur more frequently in some human populations than others. People with the "new" variants, which are thought to have first occurred 2,000 to 12,000 years ago, have higher fasting levels of blood glucose than those with the more traditional, or ancestral, form of the gene. High blood glucose levels are associated with the development of diabetes, which occurs when the body is unable to produce or respond properly to insulin.
>
The finding may help scientists better understand the subtle changes in human metabolism, or "energy balance regulation," that occurred as our species shifted from being primarily hunter-gatherers to a more agriculturally based society. It may also help clinicians identify individuals likely to develop diabetes, and direct the development of new therapies for diabetes and obesity.
>
The finding is particularly interesting because it may help clinicians identify pregnant women likely to develop gestational diabetes, according to Hsu. But it also gives a glimpse into our not-so-distant past and the ways our ancestors grappled with environmental change.
"Like other humans at the time, the Eurasian population really had to fight for survival," said Hsu. "Now we're starting to pinpoint how they did that on a molecular level. These gene variants, and the resulting higher blood sugar levels it fostered, may have helped women maintain successful pregnancies in the face of the inevitable famines that occur in an agriculturally based society. Now, in a more food-secure environment, variations in GIP could contribute to the development of diabetes or obesity."
Provided by Stanford University Medical Center