Inch by inch we're getting there....
MIT Tech Review link....
MIT Tech Review link....
A New Kind of Microchip
A probability-based processor may speed up flash memory, and eventually much more.
A computer chip that performs calculations using probabilities, instead of binary logic, could accelerate everything from online banking systems to the flash memory in smart phones and other gadgets.
Rewriting some fundamental features of computer chips, Lyric Semiconductor has unveiled its first "probability processor," a silicon chip that computes with electrical signals that represent chances, not digital 1s and 0s.
>
The electrical signals inside Lyric's chips represent probabilities, instead of 1s and 0s. While the transistors of conventional chips are arranged into components called digital NAND gates, which can be used to implement all possible digital logic functions, those in a probability processor make building blocks known as Bayesian NAND gates. Bayesian probability is a field of mathematics named after the eighteenth century English statistician Thomas Bayes, who developed the early ideas on which it is based.
Whereas a conventional NAND gate outputs a "1" if neither of its inputs match, the output of a Bayesian NAND gate represents the odds that the two input probabilities match. This makes it possible to perform calculations that use probabilities as their input and output.
A probability-based processor may speed up flash memory, and eventually much more.
A computer chip that performs calculations using probabilities, instead of binary logic, could accelerate everything from online banking systems to the flash memory in smart phones and other gadgets.
Rewriting some fundamental features of computer chips, Lyric Semiconductor has unveiled its first "probability processor," a silicon chip that computes with electrical signals that represent chances, not digital 1s and 0s.
>
The electrical signals inside Lyric's chips represent probabilities, instead of 1s and 0s. While the transistors of conventional chips are arranged into components called digital NAND gates, which can be used to implement all possible digital logic functions, those in a probability processor make building blocks known as Bayesian NAND gates. Bayesian probability is a field of mathematics named after the eighteenth century English statistician Thomas Bayes, who developed the early ideas on which it is based.
Whereas a conventional NAND gate outputs a "1" if neither of its inputs match, the output of a Bayesian NAND gate represents the odds that the two input probabilities match. This makes it possible to perform calculations that use probabilities as their input and output.
Comment