1. FLATUS ODOR JUDGE
Odor judges are common in the research labs of mouthwash companies, where the halitosis-inflicted blow great gusts of breath in their faces to test product efficacy. But Minneapolis gastroenterologist Michael Levitt recently took the job to another level—or, rather, to the other end. Levitt paid two brave souls to indulge repeatedly in the odors of other people's farts. (Levitt refuses to divulge the remuneration, but it would seem safe to characterize it thusly: Not enough.) Sixteen healthy subjects volunteered to eat pinto beans and insert small plastic collection tubes into their anuses (worst-job runners-up, to be sure). After each "episode of flatulence," Levitt syringed the gas into a discrete container, rigorously maintaining fart integrity. The odor judges then sat down with at least 100 samples, opened the caps one at a time, and inhaled robustly. As their faces writhed in agony, they rated just how noxious the smell was. The samples were also chemically analyzed, and—eureka!—Levitt determined definitively the most malodorous component of the human flatus: hydrogen sulfide.
Levitt defends his work against the reflexively dismissive by noting that doctors have never studied flatulence and that smell is a potentially critical medical symptom: "The odors of feces and intestinal gas and breath could all be important markers of gastrointestinal health," he says. Hydrogen sulfide, for instance, is an extremely toxic gas to mammals, potentially playing a role in ulcerative colitis, among other diseases. And so Levitt has dedicated his career to the study of the myriad fragrances produced by the human gut and imprudently ignored by the medical establishment.
2. DYSENTERY STOOL-SAMPLE ANALYZER
In the early '80s, Virginia Tech profs Tracy Wilkins and David Lyerly studied the diarrhea-causing microbe Clostridium difficile in sample after sample after sample of loose stool from the disease's victims. They became such crack dysentery docs that they launched a company, Techlab, dedicated to making stool-analysis kits. Today, Techlab employs 40 people, 19 of whom spend their working hours opening sloppy stool canisters and analyzing their contents in order to test the effectiveness of the company's kits. You'd have to have a pretty good sense of humor, right? Well, fortunately, they do. The Techlab Web site sells T-shirts with cartoons on the front (two flies hover over two blobs of dung; one says to the other, "Pardon me, is this stool taken?") and the company motto on the back: "Techlab: #1 in the #2 Business!"
3. BARNYARD MASTURBATOR
Researchers who want animal sperm —to study fertility or for artificial insemination—have a suite of attractive options: They can ram an electric probe up an animal's rectum, shove an artificial vagina onto the animal's penis, or simply do it the old-fashioned way—manual stimulation. The first option, electroejaculation, uses a priapic rectal probe to send electricity pulsing through the animal's nether regions. "All the normal excitatory signals that stimulate ejaculation, like touch, sight, sound and smell, can be replaced with the current from the probe," says Trish Berger, professor of animal science at the University of California, Davis. "It's fascinating. Of course, this is a woman talking." Electroejaculation generally requires anesthetizing the animal and is typically used on zoo dwellers. The other two methods—the artificial vagina, or AV, and the good old hand—require that animals be trained to the procedure. The AV—a large latex tube coated with warm lubricant —is used primarily to get sperm from dairy bulls (considered the most ornery and dangerous of bovines). The bull gets randy with a steer; when he mounts the steer with his forelegs, a brave technician, AV in hand, insinuates himself between the two aroused beasts and deftly redirects the bull penis into the mock genitalia, which he must then hold tight while the bull orgasms. (Talk about bull riding!) Three additional technicians attempt to ensure this (fool)hardy soul's safety by anchoring themselves to restraining ropes attached to a ring in the bull's nose. Alas, this isn't always absolutely effective: Everyone who's wielded an AV has had at least one close call, and more than a few have been sent to the hospital. The much safer "digital pressure" is used mostly with pigs, who are trained from an early age to mount a small bench while the researcher reaches around with a gloved hand and provides appropriate pleasure—er, pressure.
The best job in science? We nominate the pig.
4. BRAZIL MOSQUITO RESEARCHER
Scientists fighting malaria must study the biting habits of the mosquito that spreads it. In Brazil, that's the Anopheles darlingi, which doesn't fall for the light or wind traps researchers use in Africa: This smart little sucker will come near scientists only when they offer themselves as bait. In the early evening, when mosquito activity is busiest, a mosquito dinner—er, researcher—finds a nice buggy area and sets himself up inside a mosquito-netting tent with a gap at the bottom. Mosquitoes fly in low and get trapped inside, where the researcher sits stoically, sacrificing his skin to science. He need focus only on his legs to keep him busy: Whenever a mosquito chooses a drumstick dinner, the researcher draws it into a mouth tube (!) and then expels it into a container. Veteran researcher Helge Zieler used to put himself on the menu twice a week. On his best evening, he caught 500 Anopheles in 3 hours. Meanwhile, of course, the skeeters feasted on his entire corpus—a grand total of about 3,000 bites, or an average of 17 per minute for 180 minutes on end. "It's not so bad," he says, explaining that his personal response to mosquito bites is an immediate itch that goes away naturally in a few minutes. Except when his response is to contract malaria. Despite taking prophylactic chloroquine, Zieler developed a case that took him two years to shake.
Perversely, the human-pincushion act doesn't end when the fieldwork does. Normally, captive mosquitoes are fed by lab animals—just shave a guinea pig's belly and secure it to the top of the cage. But the anti-cruelty protocols for using the guinea pigs are stringent. "Sometimes," Zieler says, "it's easier to roll up your sleeve."
5. HOT-ZONE SUPERINTENDENT
During Ebola and anthrax outbreaks, the media shine spotlights on the brave scientists who don high-tech space suits and step into a Bio-Safety Level 4 (BSL4) laboratory, the designation given to labs that study lethal airborne pathogens for which there is no known cure. BSL4 scientists themselves generally enter the hot zone only occasionally, when they need to do an experiment; the really dangerous job is that of the BSL4 superintendent, who enters this lethal-bug petri dish far more regularly, to fix equipment, clean up, and ensure that the lab is airtight. He also has to change the pathogen-saturated air filters on the top of the building and bake the deadly sewer effluent underneath. No one in the world comes more constantly in touch with the Earth's deadliest microbes.
6. ISOLATION CHAMBER TESTER
"Imagine taking a car trip cross-country with your family. Now imagine that it lasts for months on end, that you can't open the windows, and that you can never get out of the car." That's how Marc Shepanek, NASA's deputy chief for medicine in extreme environments, once described the psychological challenge astronauts will face on long-distance space missions. But hey, at least they'll be going somewhere. In the meantime, we put people through the torture in immobile isolation chambers on the ground. At NASA, engineers responsible for life-support systems sign up to spend a few months in cramped captivity to test their equipment—for no additional pay. In one 91-day test at NASA, the crew re-cycled their urine into drinking water 13 times. But—as Jean-Paul Sartre almost said—forget recycled urine; true hell is other people. In a Russian chamber on New Year's Eve 1999, Canadian subject Judith La Pierre was pulled into a corner by a burly drunk Russian and kissed—possibly, she said afterward, a prelude to rape. In another incident, a fistfight spattered blood on the chamber walls. Perhaps the worst indignity of all? Most isolation-chamber subjects are would-be astronauts who undergo the torture to buff up their résumés—yet none of NASA's recent chamber testers has made the astronaut corps.
7. FISTULA FEEDER
One method used by veterinarians to study how bovine innards work is to install a hole, called a fistula, into a cow's rumen, the 30-gallon forestomach, where microbes ferment grass. Such rumen fistulae are used for a wide range of bovine digestive research, from testing new feed additives to discovering the roles various enzymes perform in digestion. "There's a plug on the left side of the cow, about six inches around," says Dan Sehnert, animal facility manager at UC Davis. "It's easy. You just take out the plug and reach your hand in." Holey cow!
8. PRISON RAPE RESEARCHER
University of South Dakota psychologist Cindy Struckman- Johnson was one of the first to seek anonymous written narrative testimonies from prisoners about the realities of prison life, and she employed a handful of students to help process the returned surveys. What she got stunned them all: One in ten inmates in the survey had been the victim of a sexual assault, many repeatedly. But it wasn't the numbers alone that made the impact, it was the vividness of the accounts and the desperation expressed. To read page after first- person page of sexual torture—"This happens every day. Please, please, can you do something about it"—well, says Struckman- Johnson, "some of my students almost couldn't handle it."
Odor judges are common in the research labs of mouthwash companies, where the halitosis-inflicted blow great gusts of breath in their faces to test product efficacy. But Minneapolis gastroenterologist Michael Levitt recently took the job to another level—or, rather, to the other end. Levitt paid two brave souls to indulge repeatedly in the odors of other people's farts. (Levitt refuses to divulge the remuneration, but it would seem safe to characterize it thusly: Not enough.) Sixteen healthy subjects volunteered to eat pinto beans and insert small plastic collection tubes into their anuses (worst-job runners-up, to be sure). After each "episode of flatulence," Levitt syringed the gas into a discrete container, rigorously maintaining fart integrity. The odor judges then sat down with at least 100 samples, opened the caps one at a time, and inhaled robustly. As their faces writhed in agony, they rated just how noxious the smell was. The samples were also chemically analyzed, and—eureka!—Levitt determined definitively the most malodorous component of the human flatus: hydrogen sulfide.
Levitt defends his work against the reflexively dismissive by noting that doctors have never studied flatulence and that smell is a potentially critical medical symptom: "The odors of feces and intestinal gas and breath could all be important markers of gastrointestinal health," he says. Hydrogen sulfide, for instance, is an extremely toxic gas to mammals, potentially playing a role in ulcerative colitis, among other diseases. And so Levitt has dedicated his career to the study of the myriad fragrances produced by the human gut and imprudently ignored by the medical establishment.
2. DYSENTERY STOOL-SAMPLE ANALYZER
In the early '80s, Virginia Tech profs Tracy Wilkins and David Lyerly studied the diarrhea-causing microbe Clostridium difficile in sample after sample after sample of loose stool from the disease's victims. They became such crack dysentery docs that they launched a company, Techlab, dedicated to making stool-analysis kits. Today, Techlab employs 40 people, 19 of whom spend their working hours opening sloppy stool canisters and analyzing their contents in order to test the effectiveness of the company's kits. You'd have to have a pretty good sense of humor, right? Well, fortunately, they do. The Techlab Web site sells T-shirts with cartoons on the front (two flies hover over two blobs of dung; one says to the other, "Pardon me, is this stool taken?") and the company motto on the back: "Techlab: #1 in the #2 Business!"
3. BARNYARD MASTURBATOR
Researchers who want animal sperm —to study fertility or for artificial insemination—have a suite of attractive options: They can ram an electric probe up an animal's rectum, shove an artificial vagina onto the animal's penis, or simply do it the old-fashioned way—manual stimulation. The first option, electroejaculation, uses a priapic rectal probe to send electricity pulsing through the animal's nether regions. "All the normal excitatory signals that stimulate ejaculation, like touch, sight, sound and smell, can be replaced with the current from the probe," says Trish Berger, professor of animal science at the University of California, Davis. "It's fascinating. Of course, this is a woman talking." Electroejaculation generally requires anesthetizing the animal and is typically used on zoo dwellers. The other two methods—the artificial vagina, or AV, and the good old hand—require that animals be trained to the procedure. The AV—a large latex tube coated with warm lubricant —is used primarily to get sperm from dairy bulls (considered the most ornery and dangerous of bovines). The bull gets randy with a steer; when he mounts the steer with his forelegs, a brave technician, AV in hand, insinuates himself between the two aroused beasts and deftly redirects the bull penis into the mock genitalia, which he must then hold tight while the bull orgasms. (Talk about bull riding!) Three additional technicians attempt to ensure this (fool)hardy soul's safety by anchoring themselves to restraining ropes attached to a ring in the bull's nose. Alas, this isn't always absolutely effective: Everyone who's wielded an AV has had at least one close call, and more than a few have been sent to the hospital. The much safer "digital pressure" is used mostly with pigs, who are trained from an early age to mount a small bench while the researcher reaches around with a gloved hand and provides appropriate pleasure—er, pressure.
The best job in science? We nominate the pig.
4. BRAZIL MOSQUITO RESEARCHER
Scientists fighting malaria must study the biting habits of the mosquito that spreads it. In Brazil, that's the Anopheles darlingi, which doesn't fall for the light or wind traps researchers use in Africa: This smart little sucker will come near scientists only when they offer themselves as bait. In the early evening, when mosquito activity is busiest, a mosquito dinner—er, researcher—finds a nice buggy area and sets himself up inside a mosquito-netting tent with a gap at the bottom. Mosquitoes fly in low and get trapped inside, where the researcher sits stoically, sacrificing his skin to science. He need focus only on his legs to keep him busy: Whenever a mosquito chooses a drumstick dinner, the researcher draws it into a mouth tube (!) and then expels it into a container. Veteran researcher Helge Zieler used to put himself on the menu twice a week. On his best evening, he caught 500 Anopheles in 3 hours. Meanwhile, of course, the skeeters feasted on his entire corpus—a grand total of about 3,000 bites, or an average of 17 per minute for 180 minutes on end. "It's not so bad," he says, explaining that his personal response to mosquito bites is an immediate itch that goes away naturally in a few minutes. Except when his response is to contract malaria. Despite taking prophylactic chloroquine, Zieler developed a case that took him two years to shake.
Perversely, the human-pincushion act doesn't end when the fieldwork does. Normally, captive mosquitoes are fed by lab animals—just shave a guinea pig's belly and secure it to the top of the cage. But the anti-cruelty protocols for using the guinea pigs are stringent. "Sometimes," Zieler says, "it's easier to roll up your sleeve."
5. HOT-ZONE SUPERINTENDENT
During Ebola and anthrax outbreaks, the media shine spotlights on the brave scientists who don high-tech space suits and step into a Bio-Safety Level 4 (BSL4) laboratory, the designation given to labs that study lethal airborne pathogens for which there is no known cure. BSL4 scientists themselves generally enter the hot zone only occasionally, when they need to do an experiment; the really dangerous job is that of the BSL4 superintendent, who enters this lethal-bug petri dish far more regularly, to fix equipment, clean up, and ensure that the lab is airtight. He also has to change the pathogen-saturated air filters on the top of the building and bake the deadly sewer effluent underneath. No one in the world comes more constantly in touch with the Earth's deadliest microbes.
6. ISOLATION CHAMBER TESTER
"Imagine taking a car trip cross-country with your family. Now imagine that it lasts for months on end, that you can't open the windows, and that you can never get out of the car." That's how Marc Shepanek, NASA's deputy chief for medicine in extreme environments, once described the psychological challenge astronauts will face on long-distance space missions. But hey, at least they'll be going somewhere. In the meantime, we put people through the torture in immobile isolation chambers on the ground. At NASA, engineers responsible for life-support systems sign up to spend a few months in cramped captivity to test their equipment—for no additional pay. In one 91-day test at NASA, the crew re-cycled their urine into drinking water 13 times. But—as Jean-Paul Sartre almost said—forget recycled urine; true hell is other people. In a Russian chamber on New Year's Eve 1999, Canadian subject Judith La Pierre was pulled into a corner by a burly drunk Russian and kissed—possibly, she said afterward, a prelude to rape. In another incident, a fistfight spattered blood on the chamber walls. Perhaps the worst indignity of all? Most isolation-chamber subjects are would-be astronauts who undergo the torture to buff up their résumés—yet none of NASA's recent chamber testers has made the astronaut corps.
7. FISTULA FEEDER
One method used by veterinarians to study how bovine innards work is to install a hole, called a fistula, into a cow's rumen, the 30-gallon forestomach, where microbes ferment grass. Such rumen fistulae are used for a wide range of bovine digestive research, from testing new feed additives to discovering the roles various enzymes perform in digestion. "There's a plug on the left side of the cow, about six inches around," says Dan Sehnert, animal facility manager at UC Davis. "It's easy. You just take out the plug and reach your hand in." Holey cow!
8. PRISON RAPE RESEARCHER
University of South Dakota psychologist Cindy Struckman- Johnson was one of the first to seek anonymous written narrative testimonies from prisoners about the realities of prison life, and she employed a handful of students to help process the returned surveys. What she got stunned them all: One in ten inmates in the survey had been the victim of a sexual assault, many repeatedly. But it wasn't the numbers alone that made the impact, it was the vividness of the accounts and the desperation expressed. To read page after first- person page of sexual torture—"This happens every day. Please, please, can you do something about it"—well, says Struckman- Johnson, "some of my students almost couldn't handle it."
Comment