This goes with my post in Sci-Mil about the new LiION tech by the Argonne National Labs. The article is about the potential for Volt, but other GM and other makers EV's.
MIT Technology Review....
MIT Technology Review....
Volt's Battery Capacity Could Double
GM has tipped its hand about the type of battery materials it aims to use in the next generation of the Chevrolet Volt and other battery-powered cars. It has licensed battery-electrode materials developed at Argonne National Laboratory, a U.S. Department of Energy Lab. These materials, called mixed-metal oxides, could improve the safety and durability of car batteries and help double their energy-storage capacity, potentially leading to substantial costs savings by allowing GM to use a smaller battery pack.
Cost is the biggest problem with the wave of battery-powered vehicles that started to arrive on the market last month. GM's Volt, an electric vehicle that goes 35 miles per charge and has a gasoline generator for longer trips, costs more than twice as much as a similar-sized conventional car, in large part because of the battery. Increasing the amount of energy that a battery stores allows an automaker to use a smaller battery pack, thereby reducing costs.
>
The patents cover a range of nickel-manganese-cobalt materials, including new variants that GM and Argonne are developing and some components of the current Volt battery electrodes, which is made by LG Chem, a Korean manufacturer. The company has been able to use the materials because the Argonne patents only apply in the United States. But now LG Chem is building a battery-manufacturing plant in Michigan and must license the intellectual property from Argonne for use in products made there. Other companies such as Sharp are also commercializing batteries with nickel-manganese-cobalt electrodes, but of types not covered by Argonne's patents.
>
To increase storage capacity in future batteries, GM and Argonne (working separately) are modifying the nickel-manganese-cobalt material in a couple of ways, says Jeff Chamberlain, manager of Argonne's battery program.
First, they are changing the relative proportions of the three metals, to create a material able to store more lithium ions. Second, they are "activating" some of the inactive components, by freeing lithium from the inactive material so that it can move between the cathode and the anode. Once the lithium ions are free, they move only in and out of the active material, and the inactive material continues to play its stabilizing role.
>
Several other companies are working with Argonne's technology, including one, Envia, that is working with Argonne to combine advanced nickel-manganese-cobalt electrode materials with advanced silicon anode materials. This project, which is being funded by the Department of Energy's Advanced Research Projects Agency for Energy, aims to produce batteries that store three times as much energy as today's lithium-ion car batteries.
GM has tipped its hand about the type of battery materials it aims to use in the next generation of the Chevrolet Volt and other battery-powered cars. It has licensed battery-electrode materials developed at Argonne National Laboratory, a U.S. Department of Energy Lab. These materials, called mixed-metal oxides, could improve the safety and durability of car batteries and help double their energy-storage capacity, potentially leading to substantial costs savings by allowing GM to use a smaller battery pack.
Cost is the biggest problem with the wave of battery-powered vehicles that started to arrive on the market last month. GM's Volt, an electric vehicle that goes 35 miles per charge and has a gasoline generator for longer trips, costs more than twice as much as a similar-sized conventional car, in large part because of the battery. Increasing the amount of energy that a battery stores allows an automaker to use a smaller battery pack, thereby reducing costs.
>
The patents cover a range of nickel-manganese-cobalt materials, including new variants that GM and Argonne are developing and some components of the current Volt battery electrodes, which is made by LG Chem, a Korean manufacturer. The company has been able to use the materials because the Argonne patents only apply in the United States. But now LG Chem is building a battery-manufacturing plant in Michigan and must license the intellectual property from Argonne for use in products made there. Other companies such as Sharp are also commercializing batteries with nickel-manganese-cobalt electrodes, but of types not covered by Argonne's patents.
>
To increase storage capacity in future batteries, GM and Argonne (working separately) are modifying the nickel-manganese-cobalt material in a couple of ways, says Jeff Chamberlain, manager of Argonne's battery program.
First, they are changing the relative proportions of the three metals, to create a material able to store more lithium ions. Second, they are "activating" some of the inactive components, by freeing lithium from the inactive material so that it can move between the cathode and the anode. Once the lithium ions are free, they move only in and out of the active material, and the inactive material continues to play its stabilizing role.
>
Several other companies are working with Argonne's technology, including one, Envia, that is working with Argonne to combine advanced nickel-manganese-cobalt electrode materials with advanced silicon anode materials. This project, which is being funded by the Department of Energy's Advanced Research Projects Agency for Energy, aims to produce batteries that store three times as much energy as today's lithium-ion car batteries.
Comment