Fuels made from prairie biomass reduce carbon dioxide levels in atmosphere
December 7, 2006
Diverse mixtures of native prairie plant species have emerged as a leader in the quest to identify the best source of biomass for producing sustainable, bio-based fuel to replace petroleum.
A new study led by David Tilman, an ecologist at the University of Minnesota, shows that mixtures of native perennial grasses and other flowering plants provide more usable energy per acre than corn grain ethanol or soybean biodiesel and are far better for the environment. The research was supported by the National Science Foundation (NSF) and the University of Minnesota Initiative for Renewable Energy and the Environment.
"Biofuels made from high-diversity mixtures of prairie plants can reduce global warming by removing carbon dioxide from the atmosphere. Even when grown on infertile soils, they can provide a substantial portion of global energy needs, and leave fertile land for food production," Tilman said.
The findings are published in the Dec. 8, 2006, issue of the journal Science.
>
December 7, 2006
Diverse mixtures of native prairie plant species have emerged as a leader in the quest to identify the best source of biomass for producing sustainable, bio-based fuel to replace petroleum.
A new study led by David Tilman, an ecologist at the University of Minnesota, shows that mixtures of native perennial grasses and other flowering plants provide more usable energy per acre than corn grain ethanol or soybean biodiesel and are far better for the environment. The research was supported by the National Science Foundation (NSF) and the University of Minnesota Initiative for Renewable Energy and the Environment.
"Biofuels made from high-diversity mixtures of prairie plants can reduce global warming by removing carbon dioxide from the atmosphere. Even when grown on infertile soils, they can provide a substantial portion of global energy needs, and leave fertile land for food production," Tilman said.
The findings are published in the Dec. 8, 2006, issue of the journal Science.
>