Wait 'til my crafter wife gets a look at this
Link......
Link......
3-D printing hits rock-bottom prices with homemade ceramics mix
This story is, literally, stone age meets digital age: University of Washington researchers are combining the ancient art of ceramics and the new technology of 3-D printing. Along the way, they are making 3-D printing dramatically cheaper.
About five years ago, Mark Ganter, a UW mechanical engineering professor and longtime practitioner of 3-D printing, became frustrated with the high cost of commercial materials and began experimenting with his own formulas. He and his students gradually developed a home-brew approach, replacing a proprietary mix with artists' ceramic powder blended with sugar and maltodextrin, a nutritional supplement. The results are printed in a recent issue of Ceramics Monthly. Co-authors are Duane Storti, UW associate professor of mechanical engineering, and Ben Utela, a former UW doctoral student.
"Normally these supplies cost $30 to $50 a pound. Our materials cost less than a dollar a pound," said Ganter. He said he wants to distribute the free recipes in order to democratize 3-D printing and expand the range of printable objects.
Glitzy three-dimensional printers have become common in the industrial world, churning out fast 3-D prototypes of everything from airplane parts to running shoes. But the machines also are becoming popular among artists, hobbyists and educational institutions.
For the past 15 years Ganter has taught an engineering course introducing students to rapid prototyping that draws students from engineering, art and architecture.
"When powders are $30 a pound, I can't let students try something new or experimental," Ganter said. "But when it's $1 a pound, I don't care. I encourage them to try new things."
The lab can go through $4,000 of materials per quarter, he said. In the 15 years of the lab's operation, bills for materials dwarf the roughly $20,000 initial costs for a printer.
Lab fees were already at the maximum, Ganter said, so instead the group went looking for a different approach - cheaper materials.
"If we're in trouble financially, imagine what's it like at a high school or a technical school?"
After printing, loose powder falls away from the printed ceramic objects. These cups were created using the UW recipe, which costs about 3 percent as much as commercial 3-D printing powders. Credit: University of Washington
Three-dimensional printers are based on inkjet technology and look like photocopying machines that spit out solid objects. The inkjets are filled with an adhesive, or binder, that prints onto thin layers of powder. Any surface with binder will be included in the finished object. Users generally create their designs on a computer and send the completed design file to the printer. The object gets built up layer by layer, each about the thickness of a piece of paper, over 10 to 60 minutes. Users then dust or blow away the excess powder to reveal the prototype.
This story is, literally, stone age meets digital age: University of Washington researchers are combining the ancient art of ceramics and the new technology of 3-D printing. Along the way, they are making 3-D printing dramatically cheaper.
About five years ago, Mark Ganter, a UW mechanical engineering professor and longtime practitioner of 3-D printing, became frustrated with the high cost of commercial materials and began experimenting with his own formulas. He and his students gradually developed a home-brew approach, replacing a proprietary mix with artists' ceramic powder blended with sugar and maltodextrin, a nutritional supplement. The results are printed in a recent issue of Ceramics Monthly. Co-authors are Duane Storti, UW associate professor of mechanical engineering, and Ben Utela, a former UW doctoral student.
"Normally these supplies cost $30 to $50 a pound. Our materials cost less than a dollar a pound," said Ganter. He said he wants to distribute the free recipes in order to democratize 3-D printing and expand the range of printable objects.
Glitzy three-dimensional printers have become common in the industrial world, churning out fast 3-D prototypes of everything from airplane parts to running shoes. But the machines also are becoming popular among artists, hobbyists and educational institutions.
For the past 15 years Ganter has taught an engineering course introducing students to rapid prototyping that draws students from engineering, art and architecture.
"When powders are $30 a pound, I can't let students try something new or experimental," Ganter said. "But when it's $1 a pound, I don't care. I encourage them to try new things."
The lab can go through $4,000 of materials per quarter, he said. In the 15 years of the lab's operation, bills for materials dwarf the roughly $20,000 initial costs for a printer.
Lab fees were already at the maximum, Ganter said, so instead the group went looking for a different approach - cheaper materials.
"If we're in trouble financially, imagine what's it like at a high school or a technical school?"
After printing, loose powder falls away from the printed ceramic objects. These cups were created using the UW recipe, which costs about 3 percent as much as commercial 3-D printing powders. Credit: University of Washington
Three-dimensional printers are based on inkjet technology and look like photocopying machines that spit out solid objects. The inkjets are filled with an adhesive, or binder, that prints onto thin layers of powder. Any surface with binder will be included in the finished object. Users generally create their designs on a computer and send the completed design file to the printer. The object gets built up layer by layer, each about the thickness of a piece of paper, over 10 to 60 minutes. Users then dust or blow away the excess powder to reveal the prototype.
Comment