Link....
Radioactive decay rates vary with the sun's rotation: research
Radioactive decay rates, thought to be unique physical constants and counted on in such fields as medicine and anthropology, may be more variable than once thought.
A team of scientists from Purdue and Stanford universities has found that the decay of radioactive isotopes fluctuates in synch with the rotation of the sun's core.
The fluctuations appear to be very small but could lead to predictive tools for solar flares and may have an impact on medical radiation treatments.
This adds to evidence of swings in decay rates in response to solar activity and the distance between the Earth and the sun that Purdue researchers Ephraim Fischbach, a professor of physics, and Jere Jenkins, a nuclear engineer, have been gathering for the last four years. The Purdue team previously reported observing a drop in the rate of decay that began a day and half before and peaked during the December 2006 solar flare and an annual fluctuation that appeared to be based on the Earth's orbit of, and changing distance from, the sun, Jenkins said.
"If the relationship between solar activity and decay rates proves to be true, it could lead to a method of predicting solar flares, which could help prevent damage to satellites and electric grids, as well as save the lives of astronauts in space," Jenkins said. "Finding that the decay rates fluctuate in a pattern that matches known and theoretical solar frequencies is compelling evidence for a solar influence on decay rates."
>
Radioactive decay rates, thought to be unique physical constants and counted on in such fields as medicine and anthropology, may be more variable than once thought.
A team of scientists from Purdue and Stanford universities has found that the decay of radioactive isotopes fluctuates in synch with the rotation of the sun's core.
The fluctuations appear to be very small but could lead to predictive tools for solar flares and may have an impact on medical radiation treatments.
This adds to evidence of swings in decay rates in response to solar activity and the distance between the Earth and the sun that Purdue researchers Ephraim Fischbach, a professor of physics, and Jere Jenkins, a nuclear engineer, have been gathering for the last four years. The Purdue team previously reported observing a drop in the rate of decay that began a day and half before and peaked during the December 2006 solar flare and an annual fluctuation that appeared to be based on the Earth's orbit of, and changing distance from, the sun, Jenkins said.
"If the relationship between solar activity and decay rates proves to be true, it could lead to a method of predicting solar flares, which could help prevent damage to satellites and electric grids, as well as save the lives of astronauts in space," Jenkins said. "Finding that the decay rates fluctuate in a pattern that matches known and theoretical solar frequencies is compelling evidence for a solar influence on decay rates."
>
Comment