SMU Link....
A project from DARPA (DoD's mad science lab) and SMU (Southern Methodist University) to develop a fiberoptic/nervous system interface. This could allow prosthetics and other electronics to wire up to both the peripheral and central nervous systems or to allow bridge repairs to the spinal cord.
A project from DARPA (DoD's mad science lab) and SMU (Southern Methodist University) to develop a fiberoptic/nervous system interface. This could allow prosthetics and other electronics to wire up to both the peripheral and central nervous systems or to allow bridge repairs to the spinal cord.
DOD, industry fund $5.6 million SMU-led research center; Lyle School technology drives development of advanced prosthetics
Lightning-fast connections between robotic limbs and the human brain may be within reach for injured soldiers and other amputees with the establishment of a multimillion-dollar research center led by SMU engineers.
Funded by a Department of Defense initiative dedicated to audacious challenges and intense time schedules, the Neurophotonics Research Center will develop two-way fiber optic communication between prosthetic limbs and peripheral nerves.
This connection will be key to operating realistic robotic arms, legs and hands that not only move like the real thing, but also "feel" sensations like pressure and heat.
Partners in the Neurophotonics Research Center also envision man-to-machine applications that extend far beyond prosthetics, leading to medical breakthroughs like brain implants for the control of tremors, neuro-modulators for chronic pain management and implants for patients with spinal cord injuries.
The researchers believe their new technologies can ultimately provide the solution to the kind of injury that left actor Christopher Reeve paralyzed after a horse riding accident. "This technology has the potential to patch the spinal cord above and below a spinal injury," said Marc Christensen, center director and electrical engineering chair in SMU's Lyle School of Engineering. "Someday, we will get there."
>
Lightning-fast connections between robotic limbs and the human brain may be within reach for injured soldiers and other amputees with the establishment of a multimillion-dollar research center led by SMU engineers.
Funded by a Department of Defense initiative dedicated to audacious challenges and intense time schedules, the Neurophotonics Research Center will develop two-way fiber optic communication between prosthetic limbs and peripheral nerves.
This connection will be key to operating realistic robotic arms, legs and hands that not only move like the real thing, but also "feel" sensations like pressure and heat.
Partners in the Neurophotonics Research Center also envision man-to-machine applications that extend far beyond prosthetics, leading to medical breakthroughs like brain implants for the control of tremors, neuro-modulators for chronic pain management and implants for patients with spinal cord injuries.
The researchers believe their new technologies can ultimately provide the solution to the kind of injury that left actor Christopher Reeve paralyzed after a horse riding accident. "This technology has the potential to patch the spinal cord above and below a spinal injury," said Marc Christensen, center director and electrical engineering chair in SMU's Lyle School of Engineering. "Someday, we will get there."
>
Comment