Wow....the potential for this is enormous.
Even more props for William Gibson (Neuromancer, Johnny Mnemonic)
Technology Review....
Even more props for William Gibson (Neuromancer, Johnny Mnemonic)
Technology Review....
A First Step Toward a Prosthesis for Memory
A neural implant helps rats with short-term recall.
Researchers have developed the first memory prosthetic device—a neural implant that, in rats, restored lost brain function and improved short-term memory retention. While human testing is still a distant goal, the implant provides evidence that the brain's complex neural code can be interpreted and reproduced to enhance cognitive function.
The device, which consists of a tiny chip and a set of 32 electrodes, marries math and neuroscience. At its heart is an algorithm that deciphers and replicates the neural code that one layer of the brain sends to another. The function restored by the implant is limited—rats were able to remember which of two levers they had pressed. But its creators believe that a device on the same principle could one day be used to improve recall in people suffering from stroke, dementia, or other brain damage.
>
"It's an exciting demonstration of the capabilities that we have now, not of only reading neuronal activity of the brain but also manipulating it," says Charles Wilson, a neuroscientist and emeritus professor at the University of California, Los Angeles, who was not involved in the research. "Hopefully, this could be clinically useful in the future."
Part of the challenge in creating the prosthesis was to develop a device that would ultimately be able to assist in the recall of many types of memories. That required learning to replicate the activities of the hippocampus. Rather than storing specific memories, the hippocampus passes them along to the brain's long-term memory, translating them into a form that the long-term memory is able to store. Similarly, the algorithm does not store specific examples—how to brush your teeth, how to find your way home—but instead creates a set of rules much like the ones a voice-recognition program might use to translate one language into another. "We're not trying to understand the language," says Berger. "Rather, on the basis of what we hear, can we translate something from Russian to Chinese without knowing either one?"
>
A neural implant helps rats with short-term recall.
Researchers have developed the first memory prosthetic device—a neural implant that, in rats, restored lost brain function and improved short-term memory retention. While human testing is still a distant goal, the implant provides evidence that the brain's complex neural code can be interpreted and reproduced to enhance cognitive function.
The device, which consists of a tiny chip and a set of 32 electrodes, marries math and neuroscience. At its heart is an algorithm that deciphers and replicates the neural code that one layer of the brain sends to another. The function restored by the implant is limited—rats were able to remember which of two levers they had pressed. But its creators believe that a device on the same principle could one day be used to improve recall in people suffering from stroke, dementia, or other brain damage.
>
"It's an exciting demonstration of the capabilities that we have now, not of only reading neuronal activity of the brain but also manipulating it," says Charles Wilson, a neuroscientist and emeritus professor at the University of California, Los Angeles, who was not involved in the research. "Hopefully, this could be clinically useful in the future."
Part of the challenge in creating the prosthesis was to develop a device that would ultimately be able to assist in the recall of many types of memories. That required learning to replicate the activities of the hippocampus. Rather than storing specific memories, the hippocampus passes them along to the brain's long-term memory, translating them into a form that the long-term memory is able to store. Similarly, the algorithm does not store specific examples—how to brush your teeth, how to find your way home—but instead creates a set of rules much like the ones a voice-recognition program might use to translate one language into another. "We're not trying to understand the language," says Berger. "Rather, on the basis of what we hear, can we translate something from Russian to Chinese without knowing either one?"
>
Comment